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Abstract. An analytic solution is given for the potential due to a capacitor consisting of 
two coaxial circular discs with equal radii and of infinitesimal thickness. The potential 
is expressed as a rapidly converging infinite series which can be readily evaluated. The 
utility of the expression is illustrated by two examples in which the potential has been 
computed. 

1. Introduction 

Our interest in the electrostatic potential due to a circular parallel plate (button) 
capacitor arose while investigating the heating of tumours by passing electrical currents 
between implanted electrodes for the purpose of cancer therapy (hyperthermia). Love 
(1949) investigated the problem of the button capacitor to take into account the 
fringing electric field in an apparatus for e l m  measurements. More recently, Hutson 
(1975) published a paper on the potential due to various electrode configurations. 
The final objective of his work was the heating of body tissues, similar to our own effort. 

Methods for computing the electrostatic potential due to a conducting circular 
plate of infinitesimal thickness, charged to a given potential, can be found in many 
textbooks (see e.g. Jackson 1962, Titchmarsh 1967, Tranter 1965). The problem was 
first solved by Weber (see e.g. Jackson 1962) who represented the potential by a 
Hankel transform. Guided by a study of numerous integrals involving Bessel functions 
he ‘spotted’ the proper kernel which is, in general, very difficult to obtain. Later, the 
researchers Tranter (1965), Titchmarsh (1967) and Copson (1947) suggested various 
systematic procedures which could have been used to find the kernel in that example. 
Unfortunately, these procedures cannot be readily adapted to the problem of finding 
the potential due to a capacitor consisting of two oppositely charged circular discs. 
The difficulties are due to the fact that each of the suggested systematic methods 
requires a certain knowledge about the potential or some of its derivatives throughout 
the entire coordinate space. While it is possible to obtain that knowledge in selected 
simple problems (for example from symmetry considerations), it would be most difficult 
to obtain for the parallel plate capacitor. 

Nicholson (1924) gives an expression for the electric potential due to the parallel 
plate capacitor as an infinite series of spheroidal harmonics with coefficients satisfying 
an infinite set of linear equations. As pointed out by Love (1949), this solution does 
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not converge for all diameter-to-plate separation ratios. Love gives a converging 
although implicit expression for the potential. The final expression he obtains is an 
integral transform involving a function which is represented as an infinite series. Each 
term in the series contains an integral for which the author does not give an evaluation. 
The numerical method used by Hutson (1975) should be adaptable for computing 
the potential due to the button capacitor. Being based on a finite difference method, 
however, the program cannot be expected to take properly into account the peculiar 
behaviour of the potential at the edges of the electrodes. The gradient of the potential 
(the electric field) goes to infinity as the electrode edges are approached. In addition, 
Hutson does not give a detailed description of the program which would make it 
readily usable for other researchers. 

In the present paper we give an analytic solution for the potential due to the 
circular parallel plate capacitor. We represent the potential as a Hankel transform 
and ‘spot’ the proper kernel by studying numerous integrals involving Bessel functions, 
similar to the procedure used by Weber. The final expression can be readily evaluated 
and this is illustrated by computations of the potential distribution due to a capacitor 
with infinite spacing and another capacitor with finite spacing between the plates. We 
hope that the given solution will be of academic interest as well as useful in practical 
applications. Textbooks on electromagnetic theory demonstrate the application of 
the Hankel transform method on examples less familiar than the well known button 
capacitor. Jackson (1962), for instance, computes the potential due to an infinite 
conducting plate with a circular aperture. Smythe (1950) finds the potential due to 
a single, circular disc and that due to an infinite strip capacitor. Sommerfeld (1964) 
shows how the potential due to a semi-infinite strip capacitor can be obtained. 

2. Solution for the electric potential 

As shown in figure 1, the capacitor is assumed to consist of two circular disc electrodes 
of radius a .  The electrodes are of infinitesimal thickness, placed a distance 2L apart, 
and are equally and oppositely charged to potentials +V and -V. In computing the 
potential @ we assume a coordinate system with its z axis passing through the centres 
of the two discs and with its x y  plane coinciding with the median plane between the 
discs. Since there are no electrical charges anywhere except on the two discs, the 
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Figure 1. Parallel plate capacitor. 
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potential can be found as the solution of Laplace's equation subject to the appropriate 
boundary conditions. The axial symmetry simplifies Laplace's equation which can be 
written, in cylindrical coordinates, 

(1) a2a/ap2+p-' aa/ap +a2a/az2 = 0.  

A solution to (1) finite at p = 0 is 

where Jo(kp) is the Bessel function of the first kind of order zero and A(k)  is a function 
which can be derived from the boundary conditions, 

q p ,  * L )  = * v, O s p s a .  (3 1 
We have chosen to write (2) using absolute values in the exponentials to ensure that 
the exponents will always be negative, a condition which is necessary in the evaluation 
of certain integrals. The proper function for A(k )  is 

(4) A ( k )  = (2V/7r)(l -e-2kL)-'(sin ka) /k  

and with this, (2) becomes 

To show that ( 5 )  indeed satisfies the boundary conditions we note that at z = *L the 
expression reduces to 

and that the integral in (6 )  is a special case of Weber's discontinuous integrals (see 
e.g. Bowman 1958). The integral is evaluated as 

and with this, (6 )  reduces to 

q p ,  *L)  = f v, O s p s a .  

Since solutions to Laplace's equation satisfying a specific set of boundary conditions 
are un'que, ( 5 )  represents the desired potential due to the parallel plate capacitor. 

In order to carry out the integration in ( 5 )  we expand the first term under the 
integral sign as 

\ 

and with this, ( 5 )  becomes 

where 
bn ,=2nL+/zkLI .  
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An evaluation of the integrals in (9) can be found in tables of integrals (see e.g. 
Gradshteyn and Ryzhik 1965); in particular, 

where 
2 1/2 Xn*=${[b:* + ( p  +u)211~2+[b:*  + ( P  - a )  1 1. 

With this, the potential due to the capacitor can be written as 

a a 
sin-’ -), ~ ( p , z ) = -  1 (sin-’-- 

2 v  
7 n = O  Xn- Xn+ 

a form which is more amenable to evaluation than ( 5 ) .  

3. Discussion 

As an example for the utility of (13)  we compute the potential in the vicinity of the 
positively charged plate of a capacitor having large spacing between the plates. We 
use a coordinate system which is shifted along the z axis so that the positive plate 
lies in the x y  plane of the new coordinate system, i.e. we use the transformation 

In the primed coordinate system we have 

6,- = Iz ‘1 + 2 n ~ ,  b,, = / z ’+  2LI + 2nL, (15)  

and with this the potential can be written as 

It can be seen that as L+co only the first term on the right-hand side will survive. 
This term can be recognised as the familiar expression for the potential due to a 
single disc. A similar calculation for the potential around the negatively charged disc 
yields the same type of result. 

As a second illustration we computed equipotential surfaces due to a capacitor 
with a / L  = 2 over the coordinate space 0 s p  s 2a, 0 s z s 2L. The results, presented 
in figure 2, were obtained from a series truncated after 100 terms. Comparison with 
equipotential surfaces computed from a series with only 15 terms showed, due to the 
rapid convergence of the series, only minor discrepancies. 
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Figure2. Lines of constant potential for a parallel plate capacitor with the electrodes 
charged to +1 and -1 V. Because of the symmetry only one half of the capacitor is shown. 

4. Conclusion 

An analytic solution for the potential due to a capacitor with parallel, circular plates 
has been found. It is represented by a rapidly converging infinite series which can be 
readily evaluated. As an example for the utility of our solution the potential in the 
vicinity of one of the electrodes was computed for a capacitor with infinite spacing 
between the plates. The infinite series was found to converge to the familiar simple 
expression for the potential due to a single charged disc. As a second example we 
graphically displayed the potential due to a capacitor, assuming the spacing between 
the plates to be equal to the plate radius. 
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